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Comparing Artificial Intelligence Guided Image Assessment 
to Current Methods of Burn Assessment

Justin J. Lee, MD, MSc1, ; Mahla Abdolahnejad, PhD2, ; Alexander Morzycki, MD, MSc, FRCSC1, ; 
Tara Freeman, BSc1, ; Hannah Chan, MD, MPH2, ; Collin Hong, MD, FRCSC2, ; Rakesh Joshi, PhD2, ;  
Joshua N. Wong, MD, MSc, FRCSC1,*,

Appropriate identification of burn depth and size is paramount. Despite the development of burn depth assessment 
aids [eg, laser Doppler imaging (LDI)], clinical assessment, which assesses partial-thickness burn depth with 67% 
accuracy, currently remains the most consistent standard of practice. We sought to develop an image-based artificial 
intelligence system that predicts burn severity and wound margins for use as a triaging tool in thermal injury 
management. Modified EfficientNet architecture trained by 1684 mobile-device-captured images of different burn 
depths was previously used to create a convoluted neural network (CNN). The CNN was modified to a novel 
boundary attention mapping (BAM) algorithm using elements of saliency mapping, which was used to recognize the 
boundaries of burns. For validation, 144 patient charts that included clinical assessment, burn location, total body 
surface area, and LDI assessment were retrieved for a retrospective study. The clinical images underwent CNN-BAM 
assessment and were directly compared with the LDI assessment. CNN using a 4-level burn severity classification 
achieved an accuracy of 85% (micro/macro-averaged receiver operating characteristic scores). The CNN-BAM system 
can successfully highlight burns from surrounding tissue with high confidence. CNN-BAM burn area segmentations 
attained a 91.6% accuracy, 78.2% sensitivity, and 93.4% specificity, when compared to LDI methodology. Results 
comparing the CNN-BAM outputs to clinical and LDI assessments have shown a high degree of correlation between 
the CNN-BAM burn severity predictions to those extrapolated from LDI healing potential (66% agreement).

CNN-BAM algorithm gives equivalent burn-depth detection accuracy as LDI with a more 
economical and accessible application when embedded in a mobile device.

Key words: burn assessment; laser Doppler imaging; artificial intelligence; convoluted neural network; Boundary Attention Mapping.

INTRODUCTION

Burn injuries are one of the leading causes of long-term mor-
bidity worldwide associated with prolonged hospitalization, 
disfigurement, and disability. This is due to the complex path-
ophysiology of burn injuries, predisposing these patients to 
infection, hypothermia, hypovolemic shock, end-organ is-
chemia, and death. Advancements in the effective preven-
tion, management, and treatment of burns carry significant 
implications for public health.

Burn severity is assessed based on the mechanism, total 
body surface area affected (TBSA%), and depth. This guides 
resuscitation and treatment decisions.1 Burn depth relates 
to healing potential and the projected risk of hypertrophic 
scar formation and functional contractures guides surgical 
 decision-making.1,2 This is categorized into first-degree or su-
perficial burns, involving only the epidermis; second-degree, 
which is subdivided into superficial partial thickness (SPT) 
and deep partial thickness (DPT) burns involving the dermis; 
third-degree or full-thickness burns, involving the epidermis 
and dermis; and fourth degree, which penetrates beyond 
the dermis into underlying tissues, including hypodermis, 
muscle fascia, and bone or other internal organs.3 As burn 
injury penetrates the dermis and beyond, the larger surface 
area injuries require clinical intervention to prevent acute and 
chronic complications such as shock, infection, hypertrophic 
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scarring, and contractures.2–4 Therefore, accurate and timely 
assessment of burn severity is essential in burn management 
and significantly can impact patient prognosis.1

Unfortunately, clinical assessment of burn depth by even 
the most experienced burn surgeons has reported an accuracy 
of only 60%-75% for mixed-depth burns.3,5,6 Given the im-
pact of accurate assessments on treatment decisions and clin-
ical outcomes, various adjunct tools and technologies have 
been developed to assist clinicians.7,8 Modalities explored for 
assessing burn depth include laser Doppler imaging (LDI), 
thermography, ultrasonography, nuclear magnetic resonance, 
near- infrared spectroscopy, and confocal microscopy. However, 
not all are equally applied in clinical practice due to the availa-
bility of equipment or limitations of training and environment.5 
LDI, the most accurate of adjunct devices, has a sensitivity of 
91% and up to 96% accuracy in predicting a patient’s recovery 
from a burn within a certain timeframe.5,6 However, barriers to 
using LDI in clinical contexts exist, including the limited avail-
ability of LDI equipment to major burn trauma centers and the 
high costs associated with the purchase and maintenance of the 
machine.6,9 Moreover, LDI accuracy increases over time, with 
97% accuracy only being achieved at 5 days. This can delay the 
time to intervention or require an individual to accept a less ac-
curate prediction for earlier intervention.5 These limitations are 
exacerbated in remote areas and low-resources settings, inciting 
a need for alternative accurate assessment tools that are rapid, 
accessible, and affordable for clinical application.

Applications of artificial intelligence (AI) or machine 
learning (ML) have garnered significant interest in this area, 
demonstrating potential for accessible and rapid burn assess-
ment and prediction of wound healing.10–16

In a previous study, we developed a convolutional neural net-
work (CNN) model, which learned from 1684 clinical burn 
images categorized into 4 depths. The purpose of this study was 
to compare the accuracy of a new CNN model compared to LDI 
assessment. We hypothesized that a CNN model can provide 
equivalent accuracy to that of LDI in burn depth assessment.

METHODS

Study design
As a part of standard clinical practice, each patient assessed in 
the Acute Burn Clinic at a Northern Canadian regional burn 
catchment center has photographs taken of their thermal 
injuries. Identifiable patient features are avoided, if possible, 
in these photos and images are maintained as part of their 
health records on EPIC Connect Care Media Manager for 
clinical decision-making. Patients who undergo an LDI assess-
ment will also have their report uploaded to their records.

After appropriate approval was received from the Human 
Research and Ethics Board at the Regional Research 
Information Services System Pro00114696, de-identified 
clinical photos and LDI reports of all patients who underwent 
LDI assessment at the Acute Burn Clinic between December 
2021 and July 2023 were collected for the study.

Data collection and exploratory data analysis
Charts were identified through the Acute Burn Clinic records 
logged in EPIC Connect Care electronic medical records. 

Demographic data extracted included age, date of injury, clin-
ical assessment of burn depth, TBSA, location of injury, LDI 
determination, treatment type, follow-up duration, days to re-
covery, and complications. In addition, patient skin tone was 
categorized using the Fitzpatrick scale by 3 separate assessors. 
These characteristics underwent exploratory data analysis to 
understand patient characteristics.

Artificial intelligence pipeline
An AI pipeline was created which determines burn severity 
and identifies the region of the burn from 2D color images, 
as described by Olivier et al. (2022) and Abdolahnejad et al. 
(2023).10,11 Briefly, a CNN, using a pre-trained base archi-
tecture of EfficientNet-B7, was trained on de-identified 2D 
color images of skin burns, captured using a digital single lens 
reflex (DSLR) camera or mobile camera device. The CNN 
can classify 4 levels of burn severity and predicts the highest 
burn severity it recognizes within an image. By using select ac-
tivation channels and information from neuronal layers from 
this CNN, a saliency mapping system, the boundary atten-
tion mapper (BAM), was created to identify the contours of 
a burn. To compare the accuracy of this BAM system to the 
non-invasive LDI method, LDI scans from patients were used 
to create a novel binary benchmark dataset, using the LDI 
scans and complementary 2D color images by conducting 
manual and semi-automated segmentations of the burn 
images (Figure 1).

Comparative study and statistical analysis
The CNN performance for predicting burn severity was 
ascertained by performance metrics, such as F1 (harmonized 
accuracy), recall, and precision scores. An area under curve-
receiver operating characteristic (ROC) analysis was also 
conducted for average micro/macro values. The statistical sig-
nificance for determining regions of burns, between LDI and 
BAM methodologies, was done by pixel-wise comparisons of 
scans and BAM maps for 104 patients (184 LDI scans), and 
reported in terms of BAM accuracy, specificity, and sensitivity, 
with LDI accuracy considered to be at 100% value for all 3 
metrics. Directly comparing clinical, LDI, and AI accuracy in 
predicting the severity of burns was not possible, as discussed 
later. However, a 3-way agreement inter-rater analysis for 
each patient (n = 138, using 241 LDI scans), for all 3 assess-
ment methodologies was undertaken. Cohen’s kappa analysis 
was used to assess the inter-rater reliability of the assessment 
methods, using SPSS statistics software. Cohen’s kappa value 
demonstrates none to slight agreement at a kappa value of 
0-0.20, fair agreement at 0.21-0.40, moderate agreement at 
0.41-0.60, substantial agreement at 0.61-0.80, and excellent 
agreement at 0.81-1.00. Statistical power is determined at a P 
value less than .05.

RESULTS

Exploratory data analysis
Demographics 
At our institution, initial burn assessments were completed 
through emergency department referrals or at the Acute Burn 
Clinic. Inclusion criteria included patients with undifferentiated 
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burn depth injuries that received LDI assessment within 
72-96 h. Exclusion criteria were patients with clear burn depth 
injuries or patients who did not have LDI images taken within 
the 72- to 96-h timeframe. Of all patients assessed between 
2021 and 2023, 144 patients were selected. The age distribu-
tion of burn injury is demonstrated in Table 1.

Burn injury 
Of 144 patients who underwent LDI assessment, burn size 
TBSA percentages ranged from < 1% to 70%. There were 92 
patients with a TBSA of 1%-5%, 30 patients with a TBSA of 
6%-10%, 12 patients with a TBSA of 11%-15%, 6 patients with 
a TBSA of 16%-20%, 2 patients with a TBSA of 21%-25%, and 

only 1 patient with a TBSA of 70%. No cases within our data 
presented with a TBSA between 26% and 69% or >70% that 
required LDI determination (Table 2).

The location of burn injury was highly variable among 
patients. There were 13 cases of burns to the face/head, 3 
cases of burns to the neck, 16 cases of burns to the chest, 
38 cases of burns to the arm, and 44 cases of burns to the 
hand. Other presentations included 8 burns to the abdomen, 
9 to the back, 6 to the buttocks, and 3 to the groin. Finally, 
there were 28 presentations of burns to the leg and 26 burns 
involving the feet. The most common case for 21.2% of 
patients was multiple burn locations in 1 injury presentation. 

Figure 1. An Example of 2D Clinical Color Images and Complementary BloomLDI Scan Images from Patients. After Clinical Photo Is Obtained 
(A), LDI Scan Is Completed From the Same Angle and Distance From the Subject (B). LDI Scan Is Displayed in Color Code, Where Red Pixels 
Depict Healing Potential (HP) of Less Than 14 Days, Which Is Equivalent to Superficial Partial Thickness (PT) Injury; Yellow Pixels Depict HP 
of 14–21 Days, Which Is Equivalent to Deep PT; and Blue Pixels Depict HP Greater Than 21 Days, Which Is Equivalent to Full-Thickness Injury 
(C). Note: Green and Pink Pixels Depict the Thresholds Between FT/DPT and DPT/SPT, Respectively. Black Pixels Denote FT If on Skin of 
Patient

Table 1. Demographics of Patients With Burn Injuries That 
Required LDI Assessment

Age range Total

Child (0–9) 17
Adolescent (10–17) 9
18–30 30
31–50 48
51–70 32
>70 8
Total 144

Table 2. Total Body Surface Area (TBSA) and Location of 
Burn Injuries That Required LDI Assessment

TBSA percentage Total number of patients

<1% 1
1–5% 92
6–10% 30
11–15% 12
16–20% 6
21–25% 2
70% 1
Total 144
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The hand was the most common single-site injury, occurring 
15.9% of the time.

Fitzpatrick skin type 
From 144 patients, there were 173 clinical images that were 
assessed as separate wound entities. This was due to a number 
of patients having multiple body areas injured at differing burn 
severity. Each clinical image was assessed by 3 independent 
assessors from the research team and given a Fitzpatrick scale. 
Conflicting categorizations were averaged and scored in the 
majority assessment. Type I comprised 66 of 173 images from 
144 patients (38%), Type II at 56 (32%), Type III at 31 (18%), 
Type IV at 10 (5.8%), Type V at 4 (2.3%), and Type VI at 6 
(3.5%). Of note, no patient had tattoos in the field of burn 
injury and/or LDI assessment (Figure 2A). Furthermore, the 
distribution of burn depth assessment using clinical, LDI, and 
AI based on the Fitzpatrick scale is displayed in Figure 2B–D 
and Table 3.

Assessment of burn depth 
Almost all burn injuries initially undergo physician assessment. 
Of the 144 patients, several patients had burn injuries to mul-
tiple sites. Each individual site (eg, upper arm and chest) was 
captured as 2 separate LDI assessments. Exploratory data 
analysis revealed 2 LDI assessments initially received clinical 
assessment of superficial burn, 150 were assessed as superficial 
partial thickness, 65 were assessed as deep partial thickness, 
and 26 were assessed as full-thickness burn injuries (Table 4).

LDI assessments of burn injuries are reported as healing 
estimates of < 14 days (equivalent to superficial partial thick-
ness), 14-21 days (equivalent to deep partial thickness), and 
> 21 days (equivalent to full thickness). Our data showed 69 
LDI assessments with < 14 days of healing potential, 136 LDI 
assessments with 14-21 days of healing potential, and 33 LDI 
assessments with > 21 days of healing potential (Table 4).

Artificial intelligence pipeline and statistical analysis 
As described previously in Abdolahnejad et al. (2023), we 
validated the efficacy of the proposed pipeline by using 2 
distinct datasets: a CNN training dataset and an LDI bench-
mark dataset. The CNN training dataset consisted of 1684 
skin burn images, taken by mobile camera and DSLR devices, 
depicting 4 different levels of burn severity. The CNN trained 
on this first dataset exhibited notable performance, achieving 
an average F1 score of 78% and micro/macro-averaged ROC 
scores of 85% for the classification of the 4 burn severity levels.

An LDI-paired dataset comprising a total of 184 2D skin 
burn images, accompanied by their corresponding LDI scans, 
from 104 burn patients in our province was selected for further 
LDI analysis based on clinical decisions. This second dataset, 
created by further preprocessing of images and scans into an 
aligned binary dataset to allow for pixel-wise comparison be-
tween AI and LDI was used to calculate the accuracy, speci-
ficity, and sensitivity of the BAM system, when ascertaining 
a patient’s burn area. When comparing the outcomes of our 
computer-vision-based saliency mapping method, referred to 

Figure 2. Fitzpatrick Scale Distribution of Patient Population with Thermal Injuries (A). Three Separate Assessors Determined the Fitzpatrick 
Type of Each Patient’s Skin Phototype. Type I Comprised 38% of 173 Images From 144 Patients, Type II at 32%, Type III at 18%, Type IV at 
5.8%, Type V at 2.3%, and Type VI at 3.5%. Of Note, No Patient Had Tattoos in the Field of Burn Injury and/or LDI Assessment. Distribution 
of Burn Depth Assessments of Clinical, Laser Doppler Imaging (LDI), and Machine Learning/Artificial Intelligence (ML/AI) Assessments Based 
on Fitzpatrick Skin Type (B–D, respectively). Corresponding Values Are Displayed on Table 3
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as BAM, with those of LDI in terms of injury boundary meas-
urement, our method’s burn area segmentations attained an 
accuracy of 91.60%, sensitivity of 78.17%, and specificity of 
93.37% (Figure 3).

To analyze the accuracy of clinical, LDI, and AI burn severity 
assessments, a slightly larger dataset of 138 patients with 241 
LDI scans was used. In the above exploratory data analysis sec-
tion, we reported burn assessment that underwent clinician and 
LDI assessment. An agreement analysis was performed, where 
clinical vs LDI analysis agreed 29% of the time and clinical vs 
AI analysis agreed 28.6% of the time, while the agreement be-
tween AI vs LDI burn severity assessments was 67% (Figure 4). 
Cohen’s kappa analysis of the 3 comparisons showed 0.037 
(P = .30), −0.095 (P = .21), and 0.37 (P < .001) respectively, 
showing poor agreement between clinical vs LDI and AI, but 
fair agreement between AI and LDI assessments.

DISCUSSION

Herein, this experimental study demonstrated the clinical 
utility of our previously published AI tool (or CNN-BAM) in 
thermal burn assessments. The CNN was trained using 1684 
skin burn images. The accuracy of the CNN-BAM tool was 
measured in 2 domains: (1) accuracy of burn depth assessment 
and (2) accuracy of burn area assessment by comparing CNN-
BAM outcomes against 184 clinical and its corresponding LDI 
photos. This was completed by reintroducing the clinical photo 
to our CNN-BAM tool, which showed comparable efficacy of 
burn depth and area assessment compared to the LDI scan. 
These results together provide an alternative burn assessment 
tool that can be applied in an accessible mobile application.

The field of AI/ML in medicine, particularly in burn as-
sessment, has witnessed a significant surge in research and 
development over the past decade.13 Of various sophisticated 
models in AI/ML being applied, CNNs are largely used for 
image-based tasks, which is particularly relevant in burn as-
sessment.14 These CNN models are made up of blocks of con-
volutional layers that are adept at extracting image features 
(eg, colors, edges, and texture). CNNs “learn” about a class of 
objects (eg, what skin with superficial depth burns looks like) 
from training images, which are labeled with the attribute that 
one wants to “teach” the model. These image labels are usu-
ally annotated by experts in the field, for example, burn sur-
geons and providers for burn images. In other words, CNNs 
primarily follow the paradigm of “supervised learning” where 
humans, by way of labeled images, guide how the ML model 
learns. These CNN models use differing neural architectures 
that are optimized to extract desired features from images to 
generalize and appropriately label images it has not previously 
“seen.”

There are various studies that have successfully developed a 
deep CNN using a dataset of burn images and shown accuracy 
in burn assessment up to 96%.12,17,18 A critique of these studies 
is the difficulty in comparing the accuracy of these AI/ML 
tools against other assessment aids. Thatcher et al. described 
a significant divergence from the above studies, by their appli-
cation of multispectral images as the learning dataset, instead 
of high-resolution polarized or light photography.19 In their 
study, data was collected from 38 subjects, with a total of 58 
burns. For each burn site, 2 critical procedures were followed: 
a clinical diagnosis to ascertain the burn depth, and a tissue bi-
opsy to validate this diagnosis. This information was then ap-
plied to various CNN architectures, including Unet, SegNet, 

Table 3. Distribution of Burn Depth Assessments of Clinical, LDI, and AI Based on Fitzpatrick Scale

Type I Type II Type III Type IV Type V Type VI

Clinical assessments

SPT 48 33 20 2 3 4
DPT 10 17 6 8 0 2
FT 8 6 5 0 1 0
LDI assessments
SPT 21 24 17 4 0 1
DPT 40 27 12 2 3 4
FT 5 5 2 4 1 1
AI assessments
SPF 1 0 1 0 0 0
SPT 14 14 9 1 0 0
DPT 39 36 18 8 3 4
FT 12 6 3 1 1 2

Table 4. Burn Depth Categorization of Burn Injuries From Clinical, LDI, and AI Assessment

Burn depth categorization Clinical assessment LDI assessments AI assessments

SPT 150 69 42
DPT 65 136 156
FT 26 33 35

Three LDI scans could not be included in for AI analysis due to missing color images; 8 images were categorized as superficial burns by the AI.
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and dFCN, as well as a voting ensemble approach using these 
architectures. The performance of these algorithms was rig-
orously evaluated using Leave-One-Out Cross-Validation, a 
method that ensures thorough testing by training the model 
on all data points except one that is used for testing. The most 
effective algorithm in their study was the ensemble, which 
demonstrated an impressive 81% sensitivity and an excep-
tional 100% specificity, coupled with a 97% positive predic-
tive value. This high level of accuracy showcases the potential 
of multispectral imaging in conjunction with advanced neural 
architectures in the accurate assessment of burn injuries.

Our approach to AI-assisted burn assessment differs 
from the previously described methods in the neural archi-
tecture, training, and testing phases of our model. The ma-
chine learning approach used EfficientNet-B7 architecture of 
CNNs. Compared to other CNNs, EfficientNet has been re-
ported to perform exceptionally well with skin images, even 
when the dataset is small to medium sized, while processing 
mobile-captured images with potential noise (such as images 
with background in the field and low-resolution images).20,21 
Utilization of EfficientNet makes this tool appropriate to be 
embedded in an application form that can interpret images 

Figure 3. A Visual Representation of Boundary Attention Mapping Analysis and Statistical Analysis. A Clinical Photo (600 × 600 Pixels) Was 
Tested With our AI/ML Burn Assessment Tool. The Total Surface Area of the Burn Our AI/ML Tool Recognized (ML Visualization) Was 
Represented Through a Mask Image Composed of Pixels. A Pixel-Wise Comparison Was Completed With LDI Image by Directly Overlaying Both 
Images. The AI/ML Tool Was Able to Pick Up on 91.6% of Pixels That LDI Assessed to be a Burn Injury, Which Showed 78.17% Sensitivity and 
93.7% Specificity

Figure 4. Agreement Analysis Between Clinical, LDI, and AI Burn Assessment. Cohen’s Kappa Analysis (Linear Weights) Was Completed to 
Assess Inter-Rater Reliability Between 3 Assessment Methods (Table 3). Clinical Vs LDI Assessment Had the Same Depth Assessment on 32.4% of 
Burn Images Tested With a Kappa Value of 0.037 (P = .3), Which Indicated Poor Agreement (A). Clinical Vs AI Assessment Had the Same Depth 
Assessment on 28.6% of Burn Images Tested With a Kappa Value of −0.095 (P = .21), Which Also Showed Poor Agreement (B). However, AI Vs 
LDI Assessment Had the Same Depth Assessment on 66% of Burn Images Tested With a Kappa Value of 0.39 (P < .001), Which Represents Fair 
Agreement (C)
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captured from mobile phones. The goal of our mobile ap-
plication is to be used at multiple stages of the burn injury 
healthcare continuum. First, this tool can be used by first 
responders, when initially assessing a patient with a thermal 
injury post-de-epithelialization. The mobile application will 
guide the user through initial burn resuscitation, like that 
of Advanced Burn Life Support. Thereafter, clinical contex-
tual information will be obtained, including demographic 
data, events leading up to injury, and mechanism of injury. 
Ultimately, clinical photo(s) will be obtained of the injured 
region. The embedded AI tool will compute the depth of in-
jury as well as TBSA and suggest whether the patient can be 
seen by primary care at the next earliest outpatient appoint-
ment, must go to a local acute treatment center, or should 
transferred to the nearest burn center. In addition, this tool 
also has the potential to be used in rural, remote, and low-
resource communities globally, where adjunct thermal in-
jury assessment such as LDI and other technologies may 
not be available due to resource constraints. Accurate burn 
assessments in these settings would aid appropriate triaging 
to determine whether the patient would benefit from transfer 
and treatment at a specialized burn center in a timely manner. 
Ultimately, it is the goal that this tool can be available in areas 
that solely rely on clinical assessments, as an efficient, cost- 
effective alternative to previously described assessment aids.

Like previous studies,12,17,18 our model was also exclu-
sively trained on images annotated with clinical assessments. 
However, this model differs in that we validated our tool by 
comparing its accuracy against another adjunct burn assess-
ment tool that has shown high accuracy and utility at various 
burn centers across the world: LDI. The comparative results 
of the AI tool described, in addition to the use of a novel sa-
liency system that segments burn areas, allow our system to 
(1) provide accurate burn assessment and (2) provide precise 
mapping of burn regions. These results not only underscore 
the accuracy of our AI model but also set a strong foundation 
for its clinical validation as a triage tool for LDI assessments 
in the future.

Future directions include clinical validation of this tool in a 
large multi-center trial. Our AI tool has been embedded into 
a software and a prototype mobile application has been devel-
oped. The plan is to launch this product and validate its utility 
at the Acute Burn Clinic, a regional catchment clinic for new 
patients with burns are referred by self-referral, emergency 
departments, and primary care physicians. To further vali-
date this, a prospective experimental study can be conducted 
on new patients with burns who undergo AI assessment can 
be pathologically confirmed using a biopsy. A multi-centered 
approach would capture a more diverse patient demo-
graphic. Furthermore, the application of the EfficientNetB7 
neural network to other components of burn care and skin 
conditions, including assessment of scars, wound healing pro-
gression, and/or malignant skin lesions can also be explored.

One limitation of this study is the inconsistency of assess-
ment outcomes from the 3 modalities: clinical, LDI, and AI. 
While clinical and AI assessments are reported in terms of 
depth or severity of the burn, LDI analysis results are reported 
in terms of healing potential (in days). Thus, the timeframes 
of healing potential are extrapolated for equivalence to burn 
depths. Moreover, the initial inclusion of burn images into the 

study was based on the interpretation of LDI color map scans. 
Also, despite a moderately sized benchmark dataset with 271 
LDI scans from 138 patients, the majority of the population’s 
Fitzpatrick score was Type I–III. As the patient’s skin tones 
were not differentiated during the learning phase, this may 
impact the accuracy of our technology for populations with 
higher Fitzpatrick scores. This provides future opportunities 
to increase the sample size with greater diversity in the patient 
population in order to train our algorithm to assess thermal 
injuries no matter the skin tone. Lastly, AI is relatively novel 
in clinical settings, and its utility continues to be investigated. 
While this study demonstrates promising results for the ap-
plication of AI, the authors suggest it does not replace 
 evidence-based clinical judgment. As such, its implementation 
should be cautiously introduced as an adjunct to clinical as-
sessment of thermal injuries with appropriate validation.

CONCLUSION

This study describes a novel clinically validated adjunct burn 
assessment tool using a type of CNN that is tailored to be 
applied in a mobile application format. This tool has shown 
comparable accuracy in assessing burn depth and area of in-
jury to that of LDI imaging. This tool represents an inex-
pensive, easy-to-use, versatile tool that can be used in all 
healthcare settings to help clinicians determine the course of 
patient management. Future studies will examine its utility in 
clinical settings and patient outcomes.
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